Matrix variate Kummer-Dirichlet distributions
نویسندگان
چکیده
منابع مشابه
Matrix Variate Kummer-dirichlet Distributions
(1.1) { Γ(α)Ψ(α,α−γ+1;ξ) }−1 exp(−ξv)v(1+v), v > 0, (1.2) respectively, where α > 0, β > 0, ξ > 0, −∞ < γ,λ < ∞, 1F1, and Ψ are confluent hypergeometric functions. These distributions are extensions of Gamma and Beta distributions, and for α < 1 (and certain values of λ and γ) yield bimodal distributions on finite and infinite ranges, respectively. These distributions are used (i) in the Bayesi...
متن کاملWilks’ Factorization of the Complex Matrix Variate Dirichlet Distributions
In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta di...
متن کاملMatrix-Variate Dirichlet Process Priors with Applications
In this paper we propose a matrix-variate Dirichlet process (MATDP) for modeling the joint prior of a set of random matrices. Our approach is able to share statistical strength among regression coe cient matrices due to the clustering property of the Dirichlet process. Moreover, since the base probability measure is de ned as a matrix-variate distribution, the dependence among the elements of e...
متن کاملMatrix-Variate Dirichlet Process Mixture Models
We are concerned with a multivariate response regression problem where the interest is in considering correlations both across response variates and across response samples. In this paper we develop a new Bayesian nonparametric model for such a setting based on Dirichlet process priors. Building on an additive kernel model, we allow each sample to have its own regression matrix. Although this o...
متن کاملSpatial Variational Auto-Encoding via Matrix-Variate Normal Distributions
The key idea of variational auto-encoders (VAEs) resembles that of traditional auto-encoder models in which spatial information is supposed to be explicitly encoded in the latent space. However, the latent variables in VAEs are vectors, which are commonly interpreted as multiple feature maps of size 1x1. Such representations can only convey spatial information implicitly when coupled with power...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2001
ISSN: 1110-757X,1687-0042
DOI: 10.1155/s1110757x0100701x